SAFE HANDS \& IIT-ian's PACE LEAP TEST\# 04 (JEE) ANS KEY Dt. 08-12-2023					
PHYSICS		CHEMISTRY		MATHS	
Q. NO.	[ANS]	Q. NO.	[ANS]	Q. NO.	[ANS]
1	C	31	A	61	C
2	D	32	A	62	C
3	D	33	A	63	C
4	B	34	A	64	A
5	C	35	D	65	B
6	C	36	A	66	A
7	D	37	A	67	B
8	C	38	C	68	C
9	B	39	B	69	B
10	B	40	D	70	C
11	A	41	D	71	A
12	D	42	B	72	B
13	D	43	D	73	C
14	B	44	B	74	B
15	B	45	B	75	A
16	A	46	C	76	C
17	C	47	B	77	D
18	B	48	C	78	A
19	A	49	D	79	C
20	B	50	A	80	D
21	45	51	6	81	9
22	4	52	4	82	4
23	5	53	4	83	8
24	10	54	2	84	6
25	172	55	3	85	11

SAFE HANDS \& PACE
 LT-4 (JEE) Maths Solutions

: ANSWER KEY :

61)	c	62)	c	63)	c	64)	a	77)	d	78)	a	79)	C	80)
65)	b	66)	a	67)	b	68)	c	81)	9	82)	4	83)	8	84)
69)	b	70)	c	71)	a	72)	b	85)	11					
73)	c	74)	b	75)	a	76)	c							

: HINTS AND SOLUTIONS :

Single Correct Answer Type

61
(c)
$N_{i}={ }^{5} C_{k} \times{ }^{4} C_{5-k}$
$N_{1}=5 \times 1$
$N_{2}=10 \times 4$
$N_{3}=10 \times 6$
$N_{4}=5 \times 4$
$N_{5}=1$
$N_{1}+N_{2}+N_{3}+N_{4}+N_{5}=126$
62
(c)

Example 22 page 121 NCERT Mathematics

63

(c)

The first digit a can take any one of 1 to 8
The third digit c can take any one of 0 to 9
When $a=1, b$ can take any one of 2 to $9=8$ values
When $a=2, b$ can take any one of 3 to $9=7$ values
When $a=3, b$ can take any one of 4 to $9=6$ values
\qquad

When $a=8, b$ can take any one $(b=9)=1$ values Thus, the number of total numbers
$=(8+7+6+\ldots+2+1) \times 10=\frac{8 \times 9}{2} \times 10=360$
64 (a)
Required number of arrangements
$=\frac{6!}{2!3!}-\frac{5!}{3!}=60-20=40$

65 (b)

A triangle is obtained by joining three non-collinear point
\therefore The total number of triangles $={ }^{18} C_{3}-{ }^{5} C_{3}=806$
66 (a)
The number of ways of choosing a committee if there is no restriction is
${ }^{10} C_{4} \cdot{ }^{9} C_{5}=\frac{10!}{4!6!} \cdot \frac{9!}{4!5!}=26460$
The number of ways of choosing the committee if both Mr. A and Ms. B are included in the committee is ${ }^{9} C_{3} \cdot{ }^{8} C_{4}=5880$
Therefore, the number of ways of choosing the committee when Mr. A and Ms. B are not together $=26480-5880=20580$
67
(b)

Since, first the 2 women select the chairs amongst 1 to 4 in ${ }^{4} P_{2}$ ways.
Now, from the remaining 6 chairs three men could be arranged in ${ }^{6} P_{3}$ ways.
\therefore Total number of arrangements $={ }^{4} P_{2} \times{ }^{6} P_{3}$

68 (c)

Given, $a_{n}=\sum_{r=0}^{n} \frac{1}{{ }^{n} C_{r}}$
Let $b_{n}=\sum_{r=0}^{n} \frac{r}{{ }^{n} C_{r}}$
Then, $b_{n}=\frac{0}{{ }^{n} C_{0}}+\frac{1}{{ }^{n} C_{1}}+\frac{2}{{ }^{n} C_{2}}+\ldots \ldots+\frac{n}{{ }^{n} C_{n}}$
$\Rightarrow b_{n}=\frac{n}{{ }^{n} C_{0}}+\frac{n-1}{{ }^{n} C_{1}}+\frac{n-2}{{ }^{n} C_{2}}+\ldots . .+\frac{0}{{ }^{n} C_{n}} .$.
$\left[\because{ }^{n} C_{0}={ }^{n} C_{n},{ }^{n} C_{1}={ }^{n} C_{n-1} \ldots\right.$. as $\left.{ }^{n} C_{r}={ }^{n} C_{n-r}\right]$
On adding Eqs. (i) and (ii), we get
$2 b_{n}=\frac{n}{{ }^{n} C_{0}}+\frac{n}{{ }^{n} C_{1}}+\ldots \ldots+\frac{n}{{ }^{n} C_{n}}$
$=n\left[\frac{1}{{ }^{n} C_{0}}+\frac{1}{{ }^{n} C_{1}}+\frac{1}{{ }^{n} C_{2}}+\ldots . .+\frac{1}{{ }^{n} C_{n}}\right]$
$\Rightarrow 2 b_{n}=n a_{n}$
$\therefore b_{n}=\frac{1}{2} n a_{n}$
69 (b)
Required number of ways $={ }^{9} C_{4}=126$

70 (c)

Example 20 page 119 NCERT Text book
71 (a)
We have,
$\frac{{ }^{2 n+1} P_{n-1}}{{ }^{2 n-1} P_{n}}=\frac{3}{5}$
$\Rightarrow 5 \cdot{ }^{2 n+1} P_{n-1}=3 \cdot{ }^{2 n-1} P_{n}$
$\Rightarrow 5 \cdot \frac{(2 n+1)!}{(n+2)!}=\frac{3(2 n-1)!}{(n-1)!}$
$\Rightarrow \frac{5(2 n+1)(2 n)(2 n-1)!}{(n+2)(n+1) n(n-1)!}=\frac{3 \cdot(2 n-1)!}{(n-1)!}$
$\Rightarrow 10(2 n+1)=3(n+2)(n+1)$
$\Rightarrow 3 n^{2}-11 n-4=0 \Rightarrow n=4$
72 (b)
We have the following ways of selections:
p-identical things q-identical things Number of ways

p	$r-p$	1
$p-1$	$r-(p-1)$	1
$:$	$:$	\vdots
$r-q$	$:$	\vdots

\therefore Total number of ways $=p-(r-q)+1$ or, $q-(r-p)+1$
$=p+q-r+1$

73 (c)

From the first set, the number of ways of selection two lines $={ }^{4} C_{2}$
From the second set, the number of ways of selection two lines $={ }^{3} C_{2}$
Since, these sets are intersect, therefore they from a parallelogram,
\therefore Required number of ways $={ }^{4} C_{2} \times{ }^{3} C_{2}$
$=4 \times 3=12$

$74 \quad$ (b)

Let there be n participants. Then, we have
${ }^{n} C_{2}=45$
$\Rightarrow \frac{n(n-1)}{2}=45 \Rightarrow n^{2}-n-9=0 \Rightarrow n=10$
75
(a)

Given, ${ }^{2 n+1} P_{n-1}:{ }^{2 n-1} P_{n}=3: 5$
$\Rightarrow \frac{(2 n+1)!}{(n+2)!} \times \frac{(n-1)!}{(2 n-1)!}=\frac{3}{5}$
$\Rightarrow \frac{(2 n+1) 2 n}{(n+2)(n+1) n}=\frac{3}{5}$
$\Rightarrow 10(2 n+1)=3\left(n^{2}+3 n+2\right)$
$\Rightarrow 3 n^{2}-11 n-4=0$
$\Rightarrow(3 n+1)(n-4)=0$
$\Rightarrow n=4$

$$
\left(n \neq-\frac{1}{3}\right)
$$

$76 \quad$ (c)
In a nine digits number, there are four even places for the four odd digits 3, 3, 5, 5
\therefore Required number of ways $=\frac{4!}{2!2!} \cdot \frac{5!}{2!3!}=60$

77 (d)

Required number of ways
$=$ Total number of ways in which 8 boys can sit

- Number of ways in which two brothers sit together
$=8!-7!\times 2!=7!\times 6=30240$
78
(a)

A number between 5000 and 10,000 can have any of the digits $5,6,7,8,9$ at thousand's place. So, thousand's place can be filled in 5 ways. Remaining 3 places can be filled by the remaining 8 digits in ${ }^{8} P_{3}$ ways
Hence, required number $=5 \times{ }^{8} P_{3}$
79
(c)

The required number of ways
$=\left({ }^{2} C_{1} \times{ }^{4} C_{2}+{ }^{2} C_{2} \times{ }^{4} C_{1}\right) \times 3!$
$=(2 \times 6+1 \times 4) 6=96$

$80 \quad$ (d)

In the word RAHUL the letters are ($\mathrm{A}, \mathrm{H}, \mathrm{L}, \mathrm{R}, \mathrm{U}$)
Number of words starting with $A=4!=24$
Number of words starting with $H=4!=24$
Number of words starting with $L=4!=24$
In the starting with R first one is RAHLU and next one is RAHUL.
\therefore Rank of the word RAHUL $=3(24)+2=74$
Integer Answer Type
81 (9)

x	x

When two consecutive digits are 11,22 , etc $=9 \cdot 9=81$

	0	0

When two consecutive digits are $00=9$

\section*{| | x | x |
| :--- | :--- | :--- |}

When two consecutive digits are $11,22,33, \ldots=9 \cdot 8=72$
Total number of number are $N=162$
82 (4)
Number of arrangements are $2 n!n$!
Given that $2 n!n!=1152$
$\Rightarrow(n!)^{2}=576$
$\Rightarrow n!=24$
$\Rightarrow n=4$
83
(8)

Let $n(A)=$ number of divisible by $60=(60,120, \ldots, 960)=16$
$n(B)=$ number divisible by $24=(24,48, \ldots, 984)=41$
$n(A \cap B)=$ number divisible by both
$=120+240+\cdots+960=8$
Hence $n(A \cap B)=n(A)-n(A \cap B)=16-8=8$
84 (6)
Number of numbers beginning with $1=120$

Number of number beginning with $2=120$

2					

Starting with 31 $=24$

3	1				

Starting with 3214 $=2$

\section*{| 3 | 2 | 1 | 4 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Finally $=1$

3	2	1	5	4	6

Hence unit place digit of $267^{\text {th }}$ number is 6
85 (11)
The number of divisors of 7875
$=(2+1)(3+1)(1+1)=24$
This number includes the divisors 1 and 7875.
Remaining 22 divisors can be paired in 11 ways.
\Rightarrow The required number of pairs $=11$

